

CMP301 Graphics Programming with
Shaders

By Mateusz Zaremba

 1502616@abertay.ac.uk

mailto:1502616@abertay.ac.uk

Contents
1. Information on user controls ... 3

Application structure ... 3

Render function ... 4

2. Shaders... 4

Specular Light Example .. 4

Tessellation Example ... 5

Shader stages ... 5

Shader algorithms and calculations ... 5

Shader algorithms and calculations ... 6

Terrain Example ... 7

Shader stages ... 7

Shader algorithms and calculations ... 8

Terrain Tessellation Example ...10

Shader stages ...11

Shader algorithms and calculations ...12

Multi Light Example ...18

Shader stages ...18

Shader algorithms and calculations ...18

Geometry Shader Example ..20

Shader stages ...20

Shader algorithms and calculations ...20

Render To Texture Example...24

Shader stages ...24

Shader algorithms and calculations ...25

3. Critical reflection ..26

4. References ...26

1. Information on user controls
User controls don’t differ from normal functionality of the framework provided (meaning camera

controls ect.). The application makes full use of ImGUI and it’s quite intuitive to use. But I’ll explain

how to use while also talking about its structure.

Application structure
The application differes from the normla ‘App1’ structure given to us during the labs. It’s divided into

‘Examples’ which showcase different shader techniques. ‘GraphicsApp’ has all example objects

(‘SpecularLightExample’, ‘Terrain Example’, ‘GeometryExample’, ‘TerrainTessellationExample’,

‘RenderToTextureExample’) which inherit from a virtual class called ‘Example’ to enable polimorphic

game state machine. ‘GraphicsApp’ also has all mesh objects that are later being passed to different

exmaples, which limits the times that those have to created.

Render function

Previously presented code structure enables for a single call to example’s render function like also

for a single scene for all the examples.

2. Shaders

Specular Light Example

This was a test example to develop the application’s structure hence there’s no major changes to it

from the lab exercise apart from applying different textures, scaling and using different primitives.

More elaborate light explanation can be found in the Multi Light Example section.

Tessellation Example

Shader stages
- Vertex shader

- Hull shader

- Domain shader

- Pixel shader

Shader algorithms and calculations

Hull shader

The mesh gets tessellated based on the camera’s position and the distance from the patch. The

value is then used to tessellate the patch on the edges and on the inside. The draw back here is that

the application does not take into account centre of the patch but centre of the mesh which would

cause a lot of problems if the vertices were being manipulated (not accurate distance).

High tessellation amount near to the mesh

Low tessellation amount father from the mesh

Shader algorithms and calculations

Terrain Example

Shader stages
- Vertex shader

- Pixel shader

Shader algorithms and calculations

Vertex Shader

Vertex shader uses SampleLevel function (on contrary to Sample which is Pixel Shader function only)

to sample the texture. Since the height map is in the shades of grey we don’t need to worry about

RGB colours so taking only one of the factors is sufficient. In this case it is ‘r’ component of the

texture’s sampled colour. Then a for loop runs from 1.0 to 0.0 assigning a new ‘y’ position to each

vertex. The brighter the pixel is the higher position it gets. The normals are also being offset.

Pixel shader

The pixel shader receives two textures which ten are being sampled and applied to the mesh. The

textures get blended, inverted, shifted and then mixed with the lighting.

Terrain Tessellation Example

With different height maps the explosion looks different. This example demonstrates

Shader stages

- Vertex shader

- Hull shader

- Domain shader

- Geometry shader

- Pixel shader

Shader algorithms and calculations

Vertex shader

The vertex shader simply passes a structure holding positions, texture coordinate and normal to the

next stage, which is the hull shader.

Hull shader

The hull shader receives the camera’s position through the constant buffer.

And then uses it to tessellate the terrain based on the distance from the camera. Unfortunately the

way it is set up now, the tessellation will not be accurate in the camera is moved to the centre of the

terrain.

Domain shader

The domain shader offsets the vertex positions and the normal positions based on the height map

and passes those newly calculated values to the geometry shader.

Geometry shader

The geometry shader calculates positions of the vertices and texture coordinates. Because it is a

triangle stream, the normals are calculated by creating two vectors (out of the triangle’s vertices)

with the same origin and taking the cross product of those two. This is not the most accurate way to

calculate normals (e.g., normal mapping would be more accurate) but it is good enough for the sake

of this example.

How normals are calculated (Picture source)

Pixel shader

The pixel shader receives 3 constant buffers.

The Light Buffer, which is used for light calculations.

The camera buffer, which is used to calculate the view direction.

And the Time Buffer from which only two variables are used – choice and frequency.

http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-13-normal-mapping/

Apart from standard light calculations there’s quite an extensive state machine for blending (the

blending intensity can be adjusted), colour shifting and inverting, of one or two textures.

Multi Light Example

This example contains of 16 lights and different meshes with a brick texture. Each light’s colours and

position can be changed.

Shader stages
- Vertex shader

- Pixel shader

Shader algorithms and calculations

Shader handler

There is a XMFLOAT4 vector of light colours and light positions of size 16 which gets populated when

setShaderParameters functions is being called. This way the number of lights can be relatively easily

changed to more or less than 16 (although there were some memory issues when I tried to have 32

lights).

Vertex Shader and Pixel Shader

Both vertex and pixel shaders have a define for number of lights called ‘NUM_LIGHTS’.

Vertex Shader

Then in the vertex shader this define is used to create (in the constant buffer) an array of light

positions of size 16.

After calculating the vertex’s position in the world, the light’s position vector is calculated and then

normalized.

Pixel Shader

In the pixel shader this define is used to create (in the constant buffer) an array of light colours of

size 16.

Then each light’s light intensity and diffuse colour is calculated. At the end the texture’s colour is

sampled and multiplied with light’s colour to get the final pixel colour.

Geometry Shader Example

This example is more of an exercise to learn how to use geometry shader and how to properly

texture in it by making a simple example of instantiating meshes in the place of a vertex and then

instantiating the same mesh again but offset in the normal’s direction.

Shader stages
- Vertex shader

- Geometry shader

- Pixel shader

Shader algorithms and calculations

Vertex shader

Vertex shader just passes a simple struct of position, texture coordinates and normal to the next

stage, which is the geometry shader.

Geometry shader

Two buffers: Position Buffer and Texture Buffer. The first one is used to instantiate a quad in a place

of 4 vertices and the second one is used to properly map this quad.

Because the main function deals with 8 vertices at the time, the max vertex count needs to be set to

8, otherwise we will not see all the geometry generated.

The first for loop generates a quad in a place of four vertices.

The second loop generates a quad but offset in the direction of the normal which is also multiplied

by -10.

Pixel Shader

Pixel shader samples two textures, blends them and applies the blended colour to the pixel.

Render To Texture Example

This example is a small elaboration from the lab example. The difference is that it is possible to scale

the mesh, apply different textures and use different primitive topology for the meshes with various

improvement in the shaders.

There is still two shader handlers: one for rendering the mesh called Lightshader and the second one

for rendering the texture called TextureShader.

Shader stages
- Vertex shader

- Pixel shader

Shader algorithms and calculations

Light Vertex shader

Shader itself has been expanded to change positions on all the axis over time.

Light Pixel Shader

Standard light calculations.

Texture Vertex Shader

Standard vertex calculations for position, texture coordinate and normals to place them in the world

and pass it to the next stage.

Texture Pixel Shader

A simple colour shifting has been applied to the rendered texture.

3. Critical reflection
Overall I am quite happy with the way my application turned out although I recognize that there is

still plenty of place for improvement. Here are a few things I could improve:

- Tessellated terrain based on the patch’s centre and distance from the camera so it is always

tessellating correctly. This might involve calculating the offset vertices in the vertex shader as

well as in the domain shader to pass vertex position to the hull shader where the patch could be

then correctly placed in the world.

- Lighting on the terrain is not being calculated correctly but I am calculating the normal to my

best knowledge.

- I could have come up with more sophisticated example of rendering to the texture but I feel

short with time and the fatigue started to get to me at this point.

- There is no example of shadowing which would definitely be a good exercise to do. I have done

the lab exercise on shadow mapping but I did not want to just copy and paste it here.

4. References
Geeks3d.com. (2018). Mesh Exploder with Geometry Shaders – Geeks3D. [online] Available at:

http://www.geeks3d.com/20140625/mesh-exploder-with-geometry-shaders/ [Accessed 19 Jan.

2018].

Luna, F. (n.d.). Introduction to 3D game programming with DirectX® 11.

Rastertek.com. (2018). Tutorial Index. [online] Available at: http://rastertek.com/tutindex.html

[Accessed 19 Jan. 2018].

Sherrod, A. and Jones, W. (2005). Beginning DirectX 11 game programming. Norwood Mass.:

Books24x7.com.

Taking Initiative. (2018). DirectX10 Tutorial 9: The Geometry Shader. [online] Available at:

https://takinginitiative.wordpress.com/2011/01/12/directx10-tutorial-9-the-geometry-shader/

[Accessed 19 Jan. 2018].

Tutorial 13 : Normal Mapping, Opengl-tutorial.org. [online] Available at: http://www.opengl-

tutorial.org/intermediate-tutorials/tutorial-13-normal-mapping/ [Accessed 20 Jan. 2018].

https://takinginitiative.wordpress.com/2011/01/12/directx10-tutorial-9-the-geometry-shader/
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-13-normal-mapping/
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-13-normal-mapping/

	1. Information on user controls
	Application structure
	Render function

	2. Shaders
	Specular Light Example
	Tessellation Example
	Shader stages
	Shader algorithms and calculations
	Hull shader

	Shader algorithms and calculations

	Terrain Example
	Shader stages
	Shader algorithms and calculations
	Vertex Shader
	Pixel shader

	Terrain Tessellation Example
	Shader stages
	Shader algorithms and calculations
	Vertex shader
	Hull shader
	Domain shader
	Geometry shader
	Pixel shader

	Multi Light Example
	Shader stages
	Shader algorithms and calculations
	Shader handler
	Vertex Shader and Pixel Shader
	Vertex Shader
	Pixel Shader

	Geometry Shader Example
	Shader stages
	Shader algorithms and calculations
	Vertex shader
	Geometry shader
	Pixel Shader

	Render To Texture Example
	Shader stages
	Shader algorithms and calculations
	Light Vertex shader
	Light Pixel Shader
	Texture Vertex Shader
	Texture Pixel Shader

	3. Critical reflection
	4. References

